注册| 登录

超导量子计算

2018-01-20

超导量子计算,作为最有潜力成功的量子计算系统之一,顾名思义就是利用超导体的一些物理性质来实现量子计算。我们知道,超导就是某些导体在低温下表现出零电阻和完全抗磁性(划重点:必须是这两种条件同时满足)的现象。超导中,存在一个非常有意思的效应,叫做约瑟夫森效应(这是由约瑟夫森最先通过理论计算,预测到的一种宏观量子效应,随后被实验证实,并因此于1973年获得诺贝尔物理学奖),即:将一个很薄的绝缘层夹在两块超导体中间,形成一个约瑟夫森结,这样该绝缘体将成为一个势垒,从而超导体中的库珀对将会遂穿过该势垒形成超导电流,从而表现出一定的物理效应。而超导量子计算就是基于约瑟夫森效应,因为基于约瑟夫森结的系统中引入了非线性,区别于谐振子,可以明确地定义二能级系统。那么,在超导量子计算中,我们该如何定义一个qubit呢?事实上,在超导体中,有三种类型的量子比特——超导相位量子比特、超导磁通量子比特和超导电荷量子比特。


QQ图片20180120102847_副本.jpg

第一种,超导相位量子比特。通过理论计算可知,通过调节偏置电流可将约瑟夫森结两端的势能与约瑟夫森结两端相位关系调节成下图的红线所示的形状。这样,若将相位φ看作是一个粒子在一个势场中的位置的话,那么粒子可以被囚禁在左边的势阱中,该粒子的能级也将会离散化(因为这是一个典型的束缚态),并且通过调节偏置电流,使得势阱刚好可容纳两个能级(有时候也会预留出三个能级,方便对量子态的测量和操控),这样,这两个能级便可如图中所示表示成一个量子比特。


QQ图片20180120102948_副本.jpg

超导相位量子比特电路图与势能图(Wikipedia)


第二种,超导磁通量子比特。将约瑟夫森结两端用超导线连接起来,形成一个带有约瑟夫森结的超导环,又叫射频超导量子干涉仪(RF SQUID),此时我们需要考虑该超导环的电感,具体等效电路如下图所示。若该约瑟夫森结的参数合适,那么通过调节外加磁场,可以将约瑟夫森结的势能曲线调节成如下图中的红色图线(这里的调节原理主要是用的超导环中磁通是量子化的性质),这样我们便可以用势阱中获得一个二能级系统。事实上,我们通常用粒子处于左右两个势阱中的哪一个来标记量子态,从而描写一个量子比特,而这两个量子态则分别对应于超导环中有一个顺时针和逆时针的超导电流。


QQ图片20180120102925_副本.jpg

超导磁通量子比特电路图与势能图(Wikipedia)


第三种,超导电荷量子比特。以上两种量子比特皆是以约瑟夫森结的相位差作为变量,而电荷量子比特则是以超导体中的电子数为变量。我们将约瑟夫森结以及它的电容做得足够小,这样超导体中的电荷量便能起到作用,其等效电路图如下所示。这样,通过控制电极电压,可以让系统变成一个近似的二能级系统,能级如下图所示,从而完成一个量子比特的表示。但是,人们通常使用的两个量子态是库珀盒中的净库珀对数是0还是1(这里的库珀盒是一个中间超导区域,即图中虚线内部的区域,体积非常小,从而使得电荷的输运可以看做是一个个穿过库珀盒)。


QQ图片20180120103000_副本.jpg

超导电荷量子比特电路图与势能图(Wikipedia)


总结一下,超导量子比特比较容易在芯片上集成,即它的可扩展性很好,同时也可以灵活地控制参数使得它具有良好的初态制备能力,以及由于超导作为一种宏观量子行为,使得它的读出能力很强。但是,超导量子比特耦合了很多环境自由度,因此其退相干时间太短了,而且需要在极低的温度下工作,使得它资源消耗较大。


QQ图片20180120103015_副本.jpg


(来源:中科院物理所)

收藏 评论:0
没有ID?去注册 忘记密码? 已有账号,马上登陆

添加表情