注册| 登录

经典与量子信息论

作者:[法] Emmanuel Desurvire 著

出版社: 科学出版社

出版年:2013-01-01

页数:712

豆瓣评分:-- 去购买

内容简介

  《经典与量子信息论(英文版)》完整地叙述了经典信息论和量子信息论,首先介绍了香农熵的基本概念和各种应用,然后介绍了量子信息和量子计算的核心特点。本书从经典信息论和量子信息论的角度,介绍了编码、压缩、纠错、加密和信道容量等内容,采用非正式但科学的精确方法,为读者提供r理解量子门和电路的知识。

  本书自始至终都在向读者介绍重要的结论,而不是让读者迷失在数学推导的细节中,并且配有大量的实践案例和章后习题,适合电子、通信、计算机等专业的研究生和科研人员学习参考。


目录

Foreword

Introduction

1 Probability basics

1.1 Events, event space, and probabilities

1.2 Combinatorics

1.3 Combined, joint, and conditional probabilities

1.4 Exercises

2 Probability distributions

2.1 Mean and variance

2.2 Exponential, Poisson, and binomial distributions

2.3 Continuous distributions

2.4 Uniform, exponential, and Gaussian (normal) distributions

2.5 Central-limit theorem

2.6 Exercises

3 Measuring information

3.1 Making sense of information

3.2 Measuring information

3.3 Information bits

3.4 Renyi's fake coin

3.5 Exercises

4 Entropy

4.1 From Boltzmann to Shannon

4.2 Entropy in dice

4.3 Language entropy

4.4 Maximum entropy (discrete source)

4.5 Exercises

5 Mutual information and more entropies

5.1 Joint and conditional entropies

5.2 Mutual information

5.3 Relative entropy

5.4 Exercises

6 Differential entropy

6.1 Entropy of continuous sources

6.2 Maximum entropy (continuous source)

6.3 Exercises

7 Algorithmic entropy and Kolmogorov complexity

7.1 Defining algorithmic entropy

7.2 The Turing machine

7.3 Universal Turing machine

7.4 Kolmogorov complexity

7.5 Kolmogorov complexity vs. Shannon's entropy

7.6 Exercises

8 Information coding

8.1 Coding numbers

8.2 Coding language

8.3 The Morse code

8.4 Mean code length and coding efficiency

8.5 Optimizing coding efficiency

8.6 Shannon's source-coding theorem

8.7 Exercises

9 Optimal coding and compression

9.1 Huffman codes

9.2 Data compression

9.3 Block codes

9.4 Exercises

10 Integer, arithmetic, and adaptive coding

10.1 Integer coding

10.2 Arithmetic coding

10.3 Adaptive Huffman coding

10.4 Lempel-Ziv coding

10.5 Exercises

11 Error correction

11.1 Communication channel

11.2 Linear block codes

11.3 Cyclic codes

11.4 Error-correction code types

11.5 Corrected bit-error-rate

11.6 Exercises

12 Channel entropy

12.1 Binary symmetric channel

12.2 Nonbinary and asymmetric discrete channels

12.3 Channel entropy and mutual information

12.4 Symbol error rate

12.5 Exercises

13 Channel capacity and coding theorem

13.1 Channel capacity

13.2 Typical sequences and the typical set

13.3 Shannon's channel coding theorem

13.4 Exercises

14 Gaussian channel and Shannon-Hartley theorem

14.1 Gaussian channel

14.2 Nonlinear channel

14.3 Exercises

15 Reversible computation

15.1 Maxwell's demon and Landauer's principle

15.2 From computer architecture to logic gates

15.3 Reversible logic gates and computation

15.4 Exercises

16 Quantum bits and quantum gates

16.1 Quantum bits

16.2 Basic computations with 1-qubit quantum gates

16.3 Quantum gates with multiple qubit inputs and outputs

16.4 Quantum circuits

16.5 Tensor products

16.6 Noncloning theorem

16.7 Exercises

17 Quantum measurements

17.1 Dirac notation

17.2 Quantum measurements and types

17.3 Quantum measurements on joint states

17.4 Exercises

18 Qubit measurements, superdense coding, and quantum teleportaUon

18.1 Measuring single qubits

18.2 Measuring n-qubits

18.3 Bell state measurement

18.4 Superdense coding

18.5 Quantum teleportation

18.6 Distributed quantum computing

18.7 Exercises

19 Deutsch-Jozsa, quantum Fourier transform, and Grover quantum database

search algorithms

19.1 Deutsch algorithm

19.2 Deutsch-Jozsa algorithm

19.3 Quantum Fourier transform algorithm

19.4 Grover quantum database search algorithm

19.5 Exercises

20 Shor's factorization algorithm

20.1 Phase estimation

20.2 Order finding

20.3 Continued fraction expansion

20.4 From order finding to factorization

20.5 Shor's factorization algorithm

20.6 Factorizing N = 15 and other nontrivial composites

20.7 Public-key cryptography

20.8 Exercises

21 Quantum information theory

21.1 Von Neumann entropy

21.2 Relative, joint, and conditional entropy, and mutual information

21.3 Quantum communication channel and Holevo bound

21.4 Exercises

……


25 Classical and quantum cryptography


收藏 评论:0
没有ID?去注册 忘记密码? 已有账号,马上登陆

添加表情